Learn how to factor a sum or difference of cubes using the special factoring patterns below.
Sum of cubes
a3 + b3 = ( a + b ) × ( a2 - ab + b2 )
Difference of cubes
a3 - b3 = ( a - b ) × ( a2 + ab + b2 )
Example #1:
Factor the sum of cubes x3 + 27
First rewrite x3 + 27 so it will have the same format as a3 + b3
x3 + 27 = x3 + 33
Let a = x and let b = 3
a3 + b3 = ( a + b ) × ( a2 - ab + b2 )
x3 + 33 = (x + 3) × (x2 - x×3 + 32)
x3 + 33 = (x + 3) × (x2 - 3x + 9)
Check
(x + 3) × (x2 - 3x + 9) = x(x2 - 3x + 9) + 3(x2 - 3x + 9)
(x + 3) × (x2 - 3x + 9) = x3 - 3x2 + 9x + 3x2 - 9x + 27
(x + 3) × (x2 - 3x + 9) = x3 - 3x2 + 3x2 +9x - 9x + 27
Everything in red is equal to 0
(x + 3) × (x2 - 3x + 9) = x3 + 27
Example #2:
Factor the difference of cubes x3 - 64
First rewrite x3 - 64 so it will have the same format as a3 - b3
x3 - 64 = x3 - 43
Let a = x and let b = 4
a3 - b3 = ( a - b ) × ( a2 + ab + b2 )
x3 - 43= (x - 4) × (x2 + x×4 + 42)
x3 - 43= (x - 4) × (x2 + 4x + 16)
Check
(x - 4) × (x2 + 4x + 16) = x(x2 + 4x + 16) - 4(x2 + 4x + 16)
(x - 4) × (x2 + 4x + 16) = x3 + 4x2 + 16x - 4x2 - 16x - 64
(x - 4) × (x2 + 4x + 16) = x3 + 4x2 + - 4x2 + 16x - 16x - 64
Everything in red is equal to 0
(x - 4) × (x2 + 4x + 16) = x3 - 64
Example #3:
Factor the difference of cubes 125x3 - 216
First rewrite 125x3 - 64 so it will have the same format as a3 - b3
125x3 - 216 = (5x)3 - (6)3
Let a = 5x and let b = 6
a3 - b3 = ( a - b ) × ( a2 + ab + b2 )
(5x)3 - (6)3 = (5x - 6)[(5x)2 + 5x × 6 + 62]
(5x)3 - (6)3 = (5x - 6)(25x2 + 30x + 36)
Example #4:
Factor the sum of cubes x6 + 8x15
First rewrite x6 + 8x15 so it will have the same format as a3 + b3
x6 + 8x15 = (x2)3 + (2x5)3
Let a = x2 and let b = 2x5
a3 + b3 = ( a + b ) × ( a2 - ab + b2 )
(x2)3 + (2x5)3 = (x2 + 2x5) × [(x2)2- x2×2x5 + (2x5)2]
(x2)3 + (2x5)3 = (x2 + 2x5) × (x4 - 2x7 + 4x10)
(x2)3 + (2x5)3 = x2(1 + 2x3) × x4(1 - 2x3 + 4x6)
(x2)3 + (2x5)3 = x6(1 + 2x3)×(1 - 2x3 + 4x6)